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1 Introduction 

The notion of a locally closed set in a topological space was introduced by 

Kuratowski and Sierpinski [8]. According to Bourbaki [5], a subset A of a topological space 

X is called locally closed in X if it is the intersection of an open set in X and a closed set in 

X. Ganster and Reilly [6]  used locally closed sets to define LC- Continuity and LC-

irresoluteness. Balachandran, Sundaram and Maki [3] introduced the concept of generalized 

locally closed sets in topological spaces and investigated some of their properties. Recently 

Sheik John [15] introduced the three new class of sets denoted by -LC(X, ), -LC*(X, ) 

and -LC**(X, ) and each of which contains LC(X, ). Also various authors like 

Gnanambal [7] and Park and Park [14] have introduced -locally closed and semi generalized 

locally closed sets respectively in topological spaces. 

 

 

Scholarly Research Journal's is licensed Based on a work at www.srjis.com 

http://www.srjis.com/
mailto:vaishnavimarigoudar@gmail.com
http://www.srjis.com/srjis_new/www.srjis.com
http://www.srjis.com/srjis_new/www.srjis.com


 
Tippeshi. V. Marigoudar & Manjunathayya. M. Holliyavar  

 (Pg. 14917-14922) 

  

14918 

 

Copyright © 2021, Scholarly Research Journal for Interdisciplinary Studies 

 
 

2      Preliminaries 

                 Throughout the thesis (X, ) and (Y, )  denote topological spaces  on  which no 

separation axioms are assumed unless explicitly stated and they simply written as X and Y  

respectively. All sets are considered to be subsets to topological spaces. The complement of 

A is denoted by X – A. The closure and interior of a set A are denoted by Cl(A)  and  int(A)  

respectively.  

The following definitions are useful in the sequel : 

DEFINITION 1.1 : A subset A of a space X is said to be  

(i) Semi open [9] if A   Cl (Int (A)). 

(ii) semi-closed set[4] if Int(cl(A))  A. 

(iii) preopen [5] ifA   Int (Cl (A)) 

(iv) preclosed [12]  ifCl (Int (A)) A 

(v)  - open [13] if A   Int (Cl (Int A))) 

(vi)  - closed [11]  ifCl (Int (Cl (A))) A 

(vii) Semi - preopen [2] (=  - open [1]) if A   Cl (Int (Cl (A))) 

(viii) a semi- pre closed set [1]  if  Int(cl(Int(A)))  A 

The family of all semi open sess (resp. semi-pre open sets) of X will be denoted by SO(X) 

SPO(X). 

1.2 sgp-Locally Closed Sets  

In this section, we introduce sgp-locally closed sets and sgp-submaximal and study 

some of their properties.  

Definition 1.2.1: A subset A of a topological space (X, ) is called a semi-generalized-pre 

locally closed set (briefly sgplc-set) if A  = S  F where S is sgp-open and F is sgp-closed. 

The class of all semi-generalized-pre locally closed sets in (X,) is denoted by SGPLC(X,). 

Definition 1.2.2: A subset A of a topological space (X,) is said to be SGPLC*-set if there 

exist sgp-open set S and a closed set F of (X,) such that A = S  F. 

Definition 1.2.3:  A subset A of a topological space (X,) is said to be SGPLC**-set if there 

exist an open set S and a sgp-closed set F of (X,) such that A = S F. 
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Theorem 1.2.4: For a subset A of (X,), the following are equivalent: 

1) A  SGPLC*(X, ) 

2) A = P  pCl (A) for some sgp-open set P. 

3) pCl (A)-A is sgp-closed. 

4) A  (X-pCl(A)) is sgp-open. 

Proof:  (1)  (2):- Let A SGPLC* (X,). Then there exists a sgp-open set P and a closed 

set F of (X,)  such that A = P F. Since A  P and A  pCl(A) . Therefore we have A  P 

 pCl(A). 

Conversely, since pCl(A)  F ,  P  pCl(A)  P  F= A . Which implies that A = P  

pCl(A).  

(2)  (1):- Since P is sgp-open and pCl(A) is closed. 

P  pCl(A)  SGPLC* (X,).Which implies that A SGPLC* (X,). 

(3)  (4) :- Let F = pCl(A)-A. Then F is sgp-closed by the assumption and   X – F = X  (X 

– (pCl(A) – A)) = A  (X-pCl(A)). But X-F is sgp-open. This shows that A  (X - pCl(A)) is 

sgp-open . 

(4)  (3):- Let U = A  (X-pCl(A)). Since U is sgp-open, X-U is sgp-closed. X – U  = X- (A 

 (X – pCl(A))) = pCl(A)  (X-A) =pC(A) – A.  

Thus pCl(A) – A is sgp-closed set .  

(4)  (2):-  Let P = A  (X – pCl(A))  Thus P is sgp-open . We prove that       A = P   

pCl(A) for some sgp-open set P. P  pCl(A)   = (A  (X-pCl(A)))  pCl(A)  = (pCl(A)  A) 

 (pCl(A)  (X – pCl(A)))  = A   = A. Therefore A = P  pCl (A). 

(2)  (4):- Let A = P  pCl (A) for some sgp-open set P. Then we prove that A  (X-

pCl(A)) is sgp-open. Now A  (X-pCl(A)) = (P  pCl(A))            (X – pCl(A)) = P  

(pCl(A)  (X – pCl(A))) = P. Which is sgp-open. Thus       A  (X – pCl(A)) is sgp-open . 

Theorem 1.2.5: If A, B SGPLC (X,), then A  B  SGPLC (X,). 

Proof: From the assumptions, there exist sgp-open sets P and Q such that             A = P  

pCl (A) and B = Q  pCl (B). Then A  B = (P  Q)  (pCl (A)  pCl(B)). Since P  Q is 

sgp-open set and pCl (A)  pCl (B) is closed. Therefore A  B  SGPLC (X,).  

Theorem 1.2.6:  If A SGPLC (X,) and B is sgp-closed set in (X,), then   A  B  

SGPLC (X,). 
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Proof: Since A  SGPLC (X,), there exist a sgp-open set P and a sgp-closed set Q such that 

A = P  Q. Now A  B = (P  Q)  B  = P (Q  B). Since P is sgp-open and Q  B is 

sgp-closed, Therefore A  B  SGPLC (X,).  

Theorem 1.2.7:  If A SGPLC*(X,) and B is sgp-open (or closed) set in (X,), then A  B 

 SGPLC*(X,). 

Proof:   Since A  SGPLC*(X,), there exist a sgp-open set P and a closed set Q such that A 

= P  Q. Now A  B = (P  Q)  B = (P  B)  Q. Since P  B is sgp-open and Q is 

closed, it follows that A  B  SGPLC* (X,).  

In this case of B being a closed set, we have A  B = (P  Q)  B = P   (Q  B). Since P 

is sgp-open set and Q  B is closed. Thus A  B  SGPLC* (X,).  

Theorem 1.2.8:  If A SGPLC**(X,) and B is sgp-closed (resp. open) set in (X,), then A 

 B  SGPLC**(X,). 

Proof: Since A  SGPLC**(X,), there exist an open set P and a sgp-closed set Q such that 

A = P  Q. Now A  B = (P  Q)  B = P (Q  B). Since P is open and QB is sgp-

closed, Therefore A  B  SGPLC**(X,). 

In this case of B being an open set, we have A  B = (P  Q) B = (P B) Q. Since P B 

is open and Q is sgp-closed, Thus A  B  SGPLC**(X,). 

Theorem 1.2.9: Let (X,) and (Y, ) be topological spaces. 

1) If A  SGPLC (X,) and B  SGPLC (Y, ), then A  B  SGPLC         (X  Y,    )  

2) If A  SGPLC*(X,) and B  SGPLC*(Y, ), then A  B  SGPLC*     (X  Y,    ). 

3) If A  SGPLC**(X,) and B  SGPLC** (Y, ), then A  B  SGPLC**(X  Y,   ). 

Proof: 1) Let A  SGPLC (X,) and B  SGPLC (Y, ). Then there exist    sgp-open sets M 

and M l of (X,) and (Y, ) and sgp-closed sets N and N l  of X and Y respectively such that 

A= M  N and B = M l  N l .  

Then A  B = (M  M l)  (N  N l ) holds. Hence A  B  SGPLC (X  Y,      ). 

2) Let A  SGPLC*(X,) and B  SGPLC*(Y, ). Then there exist sgp-open sets K and K l 

of (X,) and (Y, ) and sgp-closed sets L and L l of X and Y respectively such that A= K  L 

and B = K l  L l .  

Then A  B = (K  K l)  (L  L l ) holds. Hence A  B  SGPLC*(X  Y,       ). 
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3) Let A  SGPLC** (X,) and B  SGPLC**(Y, ). Then there exist    open sets W and W l 

of (X,) and (Y, ) and sgp-closed sets V and V l of X and Y respectively such that A= W  

V and B = W l  V l .  

Then A  B = (W  W l)  (V  V l ) holds.  

Hence A  B  SGPLC**(X  Y,    ). 

Definition 1.2.10: A topological space (X,) is said to be sgp-submaximal if every dense 

subset in it is sgp-open. 

Theorem 1.2.11: Every submaximal space is sgp-submaximal. 

Proof: Let (X,) be a submaximal space and A be a dense subset of (X,). Then A is open. 

But every open set is sgp-open and so A is sgp-open. Therefore (X,) is sgp-submaximal. 

The converse of the above theorem need not be true as seen from the following example. 

Example 1.2.12: In the Example 6.2.11, the space (X,) is sgp-submaximal but not 

submaximal, every dense subset is sgp-open. However the set A=     {a, b} is dense in (X,), 

but it is not open in X. Therefore (X,) is not submaximal. 

Theorem 1.2.13: Every -submaximal space is sgp-submaximal. 

Proof: Let (X,) be a -submaximal space and A be a dense subset of (X,). Then A is -

open. But every -open set is sgp-open and so A is sgp-open. Therefore (X,) is sgp-

submaximal. 

The converse of the above theorem need not be true as seen from the following example. 

Example 1.2.14: Let X = {a, b, c} and  = {X, , {a}}. Then the space (X,) is sgp-

submaximal but not an -submaximal. 

Remark 1.2.15: g-submaximals and sgp-submaximals are independent as seen from the 

following examples. 

Example 1.2.16: In the Example 6.2.31, the space (X,) is g-submaximal but not a sgp-

submaximal, because for the subset {a, c} is dense in (X,) it is not a sgp-open set in (X,) 

but it is g-open in (X,). 

Example 1.2.17: Let X = {a, b, c} and  = {X, , {a, b}}. Then the space (X,) is sgp-

submaximal but not a g-submaximal, because for the subset {b, c} is dense in (X,) it is not a 

g-open set in (X,) but it is sgp-open in (X,). 
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